Connect with us
https://tpc.googlesyndication.com/pagead/imgad?id=CICAgKDriYHe3QEQARgBMgh47LykQhqW-w

Space

Zoom Through the Famous Orion Nebula with NASA's Incredible 3D Video

Space.com

Published

on

Take a tour of one of the most famous star-forming gas clouds in the night sky, the Orion Nebula, with a new, 3D visualization released by NASA. 

In this short video, viewers slip through the colorful clouds, bright stars and detailed structures of the popular nebula. The visualization was created using real data from the Hubble and Spitzer space telescopes, combined with “Hollywood techniques,” according to a statement from the Space Telescope Science Institute (STScI), which co-produced the video. 

The creators of the video said in the statement that they hope the visualization will give viewers a better idea of the 3D structure of the star-forming region. For example, the Trapezium star cluster in the heart of the nebula includes a bowl-shaped valley carved out by intense ultraviolet radiation and “winds” from new stars. The complete topology of that region isn’t visible in 2D images. [The Splendor of the Orion Nebula (Photos)]

“Astronomers and visualizers worked together to make a three-dimensional model of the depths of this cavernous region, like plotting mountains and valleys on the ocean floor,” according to the statement. “Colorful Hubble and Spitzer images were then overlaid on the terrain.”

The movie occasionally switches between images taken by the two separate telescopes. The Hubble space telescope captures light in the visible range seen by humans, as well as longer and shorter wavelengths in the ultraviolet and near-infrared ranges. The Spitzer space telescope captures light in the mid-infrared to far-infrared range, capturing objects and structures that are lower in temperature than what Hubble sees. But scientists can create visible representations of the data, revealing structures that would otherwise be invisible to humans.

“Looking at the universe in infrared light gives striking context for the more familiar visible-light views,” Robert Hurt, a lead visualization scientist at the Infrared Processing and Analysis Center (IPAC) at the California Institute of Technology (Caltech), said in the statement. “This movie provides a uniquely immersive chance to see how new features appear as we shift to wavelengths of light normally invisible to our eyes.”

The two telescopes provide 2D images of cosmic objects, so the creators had to rely on both “scientific knowledge and scientific intuition” to create the 3D tour. Summer and Hurt “worked with experts to analyze the structure inside the nebula,” using visible light to create the surfaces, and infrared light to construct much of the nebula’s structure. 

“Being able to fly through the nebula’s tapestry in three dimensions gives people a much better sense of what the universe is really like,” Frank Summers, the STScI visualization scientist who led the team that developed the movie, said in the statement. 

The visualization was created by scientists at STScI and Caltech/IPAC as part of NASA’s Universe of Learning program. The program uses a “direct connection” to NASA science and scientists, to create content that “[enables] youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the universe for themselves.”

Follow Calla Cofield @callacofield. Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.

Space.com is the premier source of space exploration, innovation and astronomy news, chronicling (and celebrating) humanity's ongoing expansion across the final frontier. We transport our visitors across the solar system and beyond through accessible, comprehensive coverage of the latest news and discoveries. For us, exploring space is as much about the journey as it is the destination. So from skywatching guides and stunning photos of the night sky to rocket launches and breaking news of robotic probes visiting other planets, at Space.com you’ll find something amazing every day.

Advertisement

Space

'Stargate Origins' Brings Classic Sci-Fi Back Tonight

Space.com

Published

on

Continue Reading

Space

Mars Meteorite Will Return to the Red Planet with NASA Rover

Space.com

Published

on

Rohit Bhartia of NASA’s Mars 2020 mission holds a slice of a meteorite scientists have determined came from Mars. This slice will likely be used here on Earth for testing a laser instrument for NASA’s Mars 2020 rover; a separate slice will go to Mars on the rover.

A chunk of rock that was once part of Mars, but landed on Earth as a meteorite, will return to the Red Planet aboard a NASA rover set to launch in 2020

The meteorite, known as Sayh al Uhaymir 008 (SaU008) was found in Oman in 1999, but geologists determined that it likely originated on Mars, according to a statement from NASA’s Jet Propulsion Laboratory. Scientists think collisions between Mars and other large bodies in the solar system’s early days sent chunks of the Red Planet into space, where they might wander for eons before falling onto Earth’s surface.  

Now, NASA scientists are using the meteorite to calibrate an instrument that will fly on the Mars 2020 rover, which is scheduled to drop down on the Red Planet’s surface and collect rock samples that could one day be returned to Earth. One of the rover’s main goals is to evaluate the potential habitability of ancient and present-day Mars. [How NASA’s Mars 2020 Rover Will Work (Infographic)]

The meteorite is being used to calibrate an instrument called the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals), which will use techniques often used in forensic science to identify chemicals in the Martian rock samples, in features as thin as a human hair.

A close-up of a meteorite that likely came from Mars.

A close-up of a meteorite that likely came from Mars.

Credit: NASA/JPL-Caltech

The researchers will study the meteorite on Earth, where they are able to make sure their instruments are producing a correct analysis of the rock, and understand what features of the rock are perceptible to their instruments. When the rover settles onto Mars, researchers can once again use the rock to make sure their instruments are working as they should be, before pointing them at features of the Martian surface. 

“We’re studying things on such a fine scale that slight misalignments, caused by changes in temperature or even the rover settling into sand, can require us to correct our aim,” said Luther Beegle, principal investigator for SHERLOC, in the statement. “By studying how the instrument sees a fixed target, we can understand how it will see a piece of the Martian surface.”

There are only about 200 confirmed Martian meteorites that have been found on Earth, according to the statement. The SaU008 meteorite comes from London’s Natural History Museum, which lends out hundreds of meteorites (most of them not from Mars) every year for scientific studies. The SHERLOC team needed a Martian meteorite that was robust enough to endure the journey to Mars without flaking or crumbling. (Launch from Earth and entry into the Martian atmosphere are both very strenuous events for everything on board.) The rock also “needed to possess certain chemical features to test SHERLOC’s sensitivity. These had to be reasonably easy to detect repeatedly for the calibration target to be useful,” according to the statement.  

A slice of a Martian meteorite undergoes oxygen cleaning to remove organics. This slice will remain on Earth to be used for testing and calibrating instruments.

A slice of a Martian meteorite undergoes oxygen cleaning to remove organics. This slice will remain on Earth to be used for testing and calibrating instruments.

Credit: NASA/JPL-Caltech

Usually, instruments like SHERLOC are calibrated with a variety of materials including rock, metal and glass. And Mars meteorites have been used for instrument calibration in the past. In fact, another instrument aboard the Mars 2020 rover, called SuperCam, will be adding a Mars meteorite to NASA’s calibration target, according to the statement. And while this would be the first Mars meteorite to return to the surface of the Red Planet, NASA’s Mars Global Surveyor, which orbits the Red Planet, carries a chunk of a Martian meteorite.

SHERLOC will carry other materials from Earth in addition to Su008, including materials that could be used to make a spacesuit for use on Mars. Observations of how the material withstands the radiation, atmosphere and temperature variations on Mars will provide valuable information for possible crewed trips to the Red Planet.  

“The SHERLOC instrument is a valuable opportunity to prepare for human spaceflight as well as to perform fundamental scientific investigations of the Martian surface,” Marc Fries, a SHERLOC co-investigator and curator of extraterrestrial materials at Johnson Space Center, said in the statement. “It gives us a convenient way to test material that will keep future astronauts safe when they get to Mars.”

Follow Calla Cofield @callacofield. Follow us @Spacedotcom, Facebook and Google+. Original article on Space.com.

Continue Reading

Space

Kepler Space Telescope Discovers 95 More Alien Planets

Space.com

Published

on

Planets around other stars are the rule rather than the exception, and there are likely hundreds of billions of exoplanets in the Milky Way alone. NASA’s Kepler space telescope has found more than 2,400 alien worlds, including a new haul of 95 planets announced on Feb. 15, 2018.

The exoplanet discoveries by NASA’s Kepler space telescope keep rolling in.

Astronomers poring through data gathered during Kepler’s current extended mission, known as K2, have spotted 95 more alien planets, a new study reports. 

That brings the K2 tally to 292, and the total haul over Kepler’s entire operational life to nearly 2,440 — about two-thirds of all the alien worlds ever discovered. And more than 2,000 additional Kepler candidates await confirmation by follow-up observations or analysis. [7 Greatest Exoplanet Discoveries by NASA’s Kepler (So Far)]

Kepler launched in March 2009, on a mission to help scientists determine just how common rocky, potentially habitable worlds such as Earth are throughout the Milky Way. For four years, the spacecraft stared continuously at about 150,000 stars, looking for tiny dips in their brightness caused by the passage of planets across their faces.

This work was highly productive, as noted above. But in May 2013, the second of Kepler’s four orientation-maintaining “reaction wheels” failed, and the spacecraft lost its superprecise pointing ability, bringing the original mission to a close.

But mission managers figured out a way to stabilize Kepler using sunlight pressure, and the spacecraft soon embarked on its K2 mission, which involves exoplanet hunting on a more limited basis, as well as observing comets and asteroids in our own solar system, supernovas and a range of other objects and phenomena.

For the new study, researchers analyzed K2 data going all the way back to 2014, zeroing in on 275 “candidate” signals.

“We found that some of the signals were caused by multiple star systems or noise from the spacecraft,” study lead author Andrew Mayo, a Ph.D. student at the Technical University of Denmark’s National Space Institute, said in a statement. “But we also detected planets that range from sub-Earth-sized to the size of Jupiter and larger.”

Indeed, 149 of the signals turned out to be caused by bona fide exoplanets, 95 of which are new discoveries. And one of the new ones is a record setter.

“We validated a planet on a 10-day orbit around a star called HD 212657, which is now the brightest star found by either the Kepler or K2 missions to host a validated planet,” Mayo said. “Planets around bright stars are important because astronomers can learn a lot about them from ground-based observatories.”

The new study was published today (Feb. 15) in The Astronomical Journal.

Follow Mike Wall on Twitter @michaeldwall and Google+. Follow us @Spacedotcom, Facebook or Google+. Originally published on Space.com.

Continue Reading

Space

Russian Cargo Ship Delivers 3 Tons of Supplies to Space Station

Space.com

Published

on

Continue Reading

Trending